
Composing Equipotent Teams

Mark Cieliebak1, Stephan Eidenbenz2, and Aris Pagourtzis3

1 Institute of Theoretical Computer Science, ETH Zurich, cieliebak@inf.ethz.ch
2 Basic and Applied Simulation Science (CCS-5), Los Alamos National Laboratory†,

eidenben@lanl.gov
3 Department of Computer Science‡, NTU Athens, Greece, pagour@cs.ntua.gr

Abstract. We study the computational complexity of k Equal Sum
Subsets, in which we need to find k disjoint subsets of a given set of
numbers such that the elements in each subset add up to the same sum.
This problem is known to be NP-complete. We obtain several variations
by considering different requirements as to how to compose teams of
equal strength to play a tournament. We present:

– A pseudo-polynomial time algorithm for k Equal Sum Subsets
with k = O(1) and a proof of strong NP-completeness for k = Ω(n).

– A polynomial-time algorithm under the additional requirement that
the subsets should be of equal cardinality c = O(1), and a pseudo-
polynomial time algorithm for the variation where the common car-
dinality is part of the input or not specified at all, which we proof
NP-complete.

– A pseudo-polynomial time algorithm for the variation where we look
for two equal sum subsets such that certain pairs of numbers are not
allowed to appear in the same subset.

Our results are a first step towards determining the dividing lines be-
tween polynomial time solvability, pseudo-polynomial time solvability,
and strong NP-completeness of subset-sum related problems; we leave
an interesting set of questions that need to be answered in order to ob-
tain the complete picture.

1 Introduction

The problem of identifying subsets of equal value among the elements of a
given set is constantly attracting the interest of various research commu-
nities due to its numerous applications, such as production planning and
scheduling, parallel processing, load balancing, cryptography, and multi-
way partitioning in VLSI design, to name only a few. Most research has
so far focused on the version where the subsets must form a partition of
the given set; however, the variant where we skip this restriction is inter-
esting as well. For example, the Two Equal Sum Subsets problem can

† LA–UR–03:xxxx; work done while at ETH Zurich.
‡ Work partially done while at ETH Zurich.

2 Mark Cieliebak, Stephan Eidenbenz, and Aris Pagourtzis

be used to show NP-hardness for a minimization version of Partial Di-
gest (one of the central problems in computational biology whose exact
complexity is unknown) [4]. Further applications may include: forming
similar groups of people for medical experiments or market analysis, web
clustering (finding groups of pages of similar content), or fair allocation
of resources.

Here, we look at the problem from the point of view of a tournament
organizer: Suppose that you and your friends would like to organize a
soccer tournament (you may replace soccer with the game of your choice)
with a certain number of teams that will play against each other. Each
team should be composed of some of your friends and – in order to make
the tournament more interesting – you would like all teams to be of equal
strength. Since you know your friends quite well, you also know how well
each of them plays. More formally, you are given a set of n numbers
A = {a1, . . . , an}, where the value ai represents the excellence of your
i-th friend in the chosen game, and you need to find k teams (disjoint
subsets1 of A) such that the values of the players of each team add up to
the same number.

This problem can be seen as a variation of Bin Packing with fixed
number of bins. In this new variation we require that all bins should be
filled to the same level while it is not necessary to use all the elements.
For any set A of numbers, let sum(A) :=

∑

a∈A a denote the sum of its
elements. We call our problem k Equal Sum Subsets, where k is a fixed
constant:

Definition 1 (k Equal Sum Subsets). Given is a set of n numbers

A = {a1, . . . , an}. Find k disjoint subsets S1, . . . , Sk ⊆ A with sum(S1) =
. . . = sum(Sk).

The problem k Equal Sum Subsets has been recently shown to
be NP-complete for any constant k ≥ 3 [3]. The NP-completeness of the
particular case where k = 2 has been shown earlier by Woeginger and
Yu [8]. To the best of our knowledge, the variations of k Equal Sum
Subsets that we study in this paper have not been investigated before
in the literature.

We have introduced parameter k for the number of equal size subsets
as a fixed constant that is part of the problem definition. An interesting

1 Under a strict formalism we should define A as a set of elements which have val-

ues {a1, . . . , an}. For convenience, we prefer to identify elements with their values.
Moreover, the term “disjoint subsets” refers to subsets that contain elements of A

with different indices.

Composing Equipotent Teams 3

variation is to allow k to be a fixed function of the number of elements
n, e.g. k = n

q
for some constant q. In the sequel, we will always consider

k as a function of n; whenever k is a constant we simply write k = O(1).
The definition of k Equal Sum Subsets corresponds to the situation

in which it is allowed to form subsets that do not have the same number of
elements. In some cases this makes sense; however, we may want to have
the same number of elements in each subset (this would be especially
useful in composing teams for a tournament). We thus define k Equal
Sum Subsets of Specified Cardinality as follows:

Definition 2 (k Equal Sum Subsets of Specified Cardinality).
Given are a set of n numbers A = {a1, . . . , an} and a cardinality c, find k

disjoint subsets S1, . . . , Sk ⊆ A with sum(S1) = . . . = sum(Sk) such that

each Si has cardinality c.

There are two nice variations of this problem, depending on the pa-
rameter c. The first is to require c to be a fixed constant; this corresponds
to always playing a specific game (e.g. if you always play soccer then it
is c = 11). We call this problem k Equal Sum Subsets of Cardinal-
ity c. The second variation is to require only that all teams should have
an equal number of players, without specifying this number; this indeed
happens in several ”unofficial” tournaments, e.g. when composing groups
of people for medical experiments, or in online computer games. We call
the second problem k Equal Sum Subsets of Equal Cardinality.

Let us now consider another aspect of the problem. Your teams would
be more efficient and happy if they consisted of players that like each other
or, at least, that do not hate each other. Each of your friends has a list of
people that she/he prefers as team-mates or, equivalently, a list of people
that she/he would not like to have as team-mates. In order to compose k

equipotent teams respecting such preferences/exclusions, you should be
able to solve the following problem:

Definition 3 (k Equal Sum Subsets with Exclusions). Given are

a set of n numbers A = {a1, . . . , an}, and an exclusion graph Gex =
(A,Eex) with vertices A and edges Eex ⊆ A × A, find k disjoint subsets

S1, . . . , Sk ⊆ A with sum(S1) = . . . = sum(Sk) such that each set Si is an

independent set in Gex, i.e., there is no edge between any two vertices in

Si.

An overview of the results presented in this paper is given below. In
Section 2, we propose a dynamic programming algorithm for k Equal
Sum Subsets with running time O(nSk

kk−1), where n is the cardinality of

4 Mark Cieliebak, Stephan Eidenbenz, and Aris Pagourtzis

the input set and S is the sum of all numbers in the input set; the algo-
rithm runs in pseudo-polynomial time2 for k = O(1). For k Equal Sum
Subsets with k = Ω(n), we show strong NP-completeness3 in Section 3
by proposing a reduction from 3-Partition.

In Section 4, we propose a polynomial-time algorithm for k Equal
Sum Subsets of Cardinality c. The algorithm uses exhaustive search
and runs in time O(nkc), which is polynomial in n as the two parameters
k and c are fixed constants. For k Equal Sum Subsets of Speci-
fied Cardinality, we show NP-completeness; the result holds also for
k Equal Sum Subsets of Equal Cardinality. However, we show
that none of these problems is strongly NP-complete, by presenting an
algorithm that can solve them in pseudo-polynomial time.

In Section 5, we study k Equal Sum Subsets with Exclusions,
which is NP-complete since it is a generalization of k Equal Sum Sub-
sets. We present a pseudo-polynomial time algorithm for the case where
k = 2. We also give a modification of this algorithm that additionally
guarantees that the two sets will have an equal (specified or not) cardi-
nality.

We conclude in Section 6 presenting a set of open questions and prob-
lems.

1.1 Number Representation

In many of our proofs, we use numbers that are expressed in the number
system of some base B. We denote by 〈a1, . . . , an〉 the number

∑

1≤i≤n aiB
n−i;

we say that ai is the i-th digit of this number. In our proofs, we will
choose base B large enough such that even adding up all numbers oc-
curing in the reduction will not lead to carry-digits from one digit to
the next. Therefore, we can add numbers digit by digit. The same holds
for scalar products. For example, having base B = 27 and numbers
α = 〈3, 5, 1〉, β = 〈2, 1, 0〉, then α + β = 〈5, 6, 1〉 and 3 · α = 〈9, 15, 3〉.

We will generally make liberal use of the notation and allow differ-
ent bases for each digit. We define the concatenation of two numbers
by 〈a1, . . . , an〉 ‖ 〈b1, . . . , bm〉 := 〈a1, . . . , an, b1, . . . , bm〉, i.e., α ‖ β =
αBm + β, where m is the number of digits in β. We will use ∆n(i) :=

2 I.e., the running time is polynomial in the cardinality of the input and in the largest
number of the input, but not necessarily polynomial in the bit length of the largest
number.

3 A problem Π is strong NP-hard if Π is still NP-hard when all input numbers are
polynomially bounded in the cardinality of the input. In this case, no pseudopoly-
nomial time algorithms can exist for Π (unless P = NP).

Composing Equipotent Teams 5

〈0, . . . , 0, 1, 0, . . . , 0〉 for the number that has n digits, all 0’s except for
the i-th position where the digit is 1. Furthermore, 1n := 〈1, . . . , 1〉 is the
number that has n digits, all 1’s, and 0n := 〈0, . . . , 0〉 has n zeros. Notice
that 1n = Bn − 1.

2 A Pseudo-Polynomial Time Algorithm for k Equal
Sum Subsets with k = O(1)

We present a dynamic programming algorithm for k Equal Sum Sub-
sets that uses basic ideas of well-known dynamic programming algo-
rithms for Bin Packing with fixed number of bins [5]. For constant k,
this algorithm runs in pseudo-polynomial time.

For an instance A = {a1, . . . , an} of k Equal Sum Subsets, let
S = sum(A). We define boolean variables F (i, s1, . . . , sk), where i ∈
{1, . . . , n} and sj ∈ {0, . . . , bS

k
c} for 1 ≤ j ≤ k. Variable F (i, s1, . . . , sk)

will be TRUE if there are k disjoint subsets X1, . . . , Xk ⊆ {a1, . . . , ai}
with sum(Xj) = sj, for 1 ≤ j ≤ k. There are k sets of equal sum if and
only if there exists a value s ∈ {1, . . . , b S

k
c} such that F (n, s, . . . , s) =

TRUE.

Clearly, F (1, s1, . . . , sk) is TRUE if and only if either si = 0 for 1 ≤
i ≤ k or there exists index j such that sj = a1 and si = 0 for all 1 ≤ i ≤
k, i 6= j.

For i ∈ {2, . . . , n} and sj ∈ {0, . . . , bS
k
c}, variable F (i, s1, . . . , sk) can

be expressed recursively as follows:

F (i, s1, . . . , sk) = F (i − 1, s1, . . . , sk) ∨
∨

1≤j≤k
sj−ai≥0

F (i − 1, s1, . . . , sj−1, sj − ai, sj+1, . . . , sk).

The value of all variables can be determined in time O(nSk

kk−1), since

there are nbS
k
ck variables, and computing each variable takes at most

time O(k). This yields the following

Theorem 4. There is a dynamic programming algorithm that solves k

Equal Sum Subsets for input A = {a1, . . . , an} in time O(n·Sk

kk−1), where

S = sum(A). For k = O(1) this algorithm runs in pseudo-polynomial

time.

6 Mark Cieliebak, Stephan Eidenbenz, and Aris Pagourtzis

3 Strong NP-Completeness of k Equal Sum Subsets with
k = Ω(n)

In Section 2 we gave a pseudo-polynomial time algorithm for k Equal
Sum Subsets assuming that k is a fixed constant. We will now show that
this is unlikely if k is a fixed function of the cardinality n of the input
set. In particular, we will prove that k Equal Sum Subsets is strongly
NP-complete if k = Ω(n).

Let k = n
q

for some fixed integer q ≥ 2. We provide a polynomial
reduction from 3-Partition, which is defined as follows: Given a multiset
of n = 3m numbers P = {p1, . . . , pn} and a number h with h

4
< pi < h

2
,

for 1 ≤ i ≤ n, are there m pairwise disjoint sets T1, . . . , Tm such that
sum(Tj) = h, for 1 ≤ j ≤ m? Observe that in a solution for 3-Partition,
there are exactly three elements in each set Tj .

Lemma 5. If k = n
q

for some fixed integer q ≥ 2, then 3-Partition can

be reduced to k Equal Sum Subsets.

Proof. Let P = {p1, . . . , pn} and h be an instance of 3-Partition. If all
elements in P are equal, then there is a trivial solution. Otherwise, let
r = 3 · (q − 2) + 1 and

ai = 〈pi〉 ‖ 0r, for 1 ≤ i ≤ n

bj = 〈h〉 ‖ 0r, for 1 ≤ j ≤
2n

3

dk,` = 〈0〉 ‖ ∆r(k), for 1 ≤ k ≤ r, 1 ≤ ` ≤
n

3

Here, we use base B = 2nh for all numbers. Let A be the set containing
all numbers ai, bj and dk,`. We will use A as an instance of k Equal Sum
Subsets. The size of A is n′ = n+ 2n

3
+r · n

3
= n+ 2n

3
+(3 ·(q−2)+1) · n

3
=

q · n. We prove that there is a solution for the 3-Partition instance P

and h if and only if there are n′

q
disjoint subsets of A with equal sum.

“only if”: Let T1, . . . , Tm be a solution for the 3-Partition instance.
This induces m subsets of A with sum 〈h〉 ‖ 0r, namely Si = {ai | pi ∈ Ti}.
Together with the 2n

3
subsets that contain exactly one of the bj’s each,

we have n = n′

q
subsets of equal sum 〈h〉 ‖ 0r.

“if”: Assume there is a solution S1, . . . , Sn for the k Equal Sum Sub-
sets instance. Let Sj be any set in this solution. Then sum(Sj) will have a
zero in the r rightmost digits, since for each of these digits, there are only
n
3

numbers in A for which this digit is non-zero (which are not enough to

Composing Equipotent Teams 7

have one of them in each of the n sets Sj). Thus, only numbers ai and
bj can occur in the solution; moreover, we only need to consider the first
digit of these numbers (as the other are zeros).

Since not all numbers ai are equal, and the solution consists of n′

q
= n

disjoint sets, there must be at least one bj in one of the subsets in the
solution. Thus, for all j we have sum(Sj) ≥ h. On the other hand, the
sum of all ai’s and of all bj’s is exactly n ·h, therefore sum(Sj) = h, which
means that all ai’s and all bj ’s appear in the solution. More specifically,
there are 2n

3
sets in the solution such that each of them contains exactly

one of the bj ’s, and each of the remaining n
3

sets in the solution consists
only of ai’s, such that the corresponding ai’s add up to h. Therefore, the
latter sets immediately yield a solution for the 3-Partition instance. ut

In the previous proof, r is a constant, therefore numbers ai and bj

are polynomial in h and numbers dk,` are bounded by a constant. Since
3-Partition is strongly NP-complete [5], k Equal Sum Subsets is
strongly NP-hard for k = n

q
as well. Obviously, k Equal Sum Subsets

is in NP even if k = n
q

for some fixed integer q ≥ 2, thus we have the
following

Theorem 6. k Equal Sum Subsets is NP-complete in the strong sense

for k = n
q
, for any fixed integer q ≥ 2.

4 Restriction to Equal Cardinalities

In this section we study the setting where we do not only require the
teams to be of equal strength, but to be of equal cardinality as well. If
we are interested in a specific type of game, e.g. soccer, then the size of
the teams is also fixed, say c = 11, and we have k Equal Sum Subsets
of Cardinality c. This problem is solvable in time polynomial in n by
exhaustive search as follows: compute all N =

(

n
c

)

subsets of the input

set A that have cardinality c; consider all
(

N
k

)

possible sets of k subsets,
and for each one check if it consists of disjoint subsets of equal sum. This
algorithm needs time O(nck), which is polynomial in n, since c and k are
constants.

On the other hand, if the size of the teams is not fixed, but given as
part of the input, then we have k Equal Sum Subsets of Specified
Cardinality. We show that this problem is NP-hard by modifying a re-
duction used in [3] to show NP-completeness of k Equal Sum Subsets.
The reduction is from Alternating Partition, which is the follow-
ing NP-complete [5] variation of Partition: Given n pairs of numbers

8 Mark Cieliebak, Stephan Eidenbenz, and Aris Pagourtzis

(u1, v1), . . . , (un, vn), are there two disjoint sets of indices I and J with
I ∪ J = {1, . . . , n} such that

∑

i∈I ui +
∑

j∈J vj =
∑

i∈I vi +
∑

j∈J uj

(equivalently,
∑

i∈I ui +
∑

j∈J vj =
∑

i6∈I ui +
∑

j 6∈J vj)?

Lemma 7. Alternating Partition can be reduced to k Equal Sum
Subsets of Specified Cardinality for any k ≥ 2.

Proof. We transform a given Alternating Partition instance with
pairs (u1, v1), . . . , (un, vn) into a k Equal Sum Subsets of Speci-
fied Cardinality instance as follows: Let S =

∑n
i=1(ui + vi). For

each pair (ui, vi) we create two numbers u′
i = 〈ui〉 ‖ ∆n(i) and v′i =

〈vi〉 ‖ ∆n(i). In addition, we create k − 2 (equal) numbers b1, . . . , bk−2

with bi = 〈S
2
〉 ‖ ∆n(n). Finally, for each bi we create n − 1 numbers

di,j = 〈0〉 ‖ ∆n(j), for 1 ≤ j ≤ n − 1. While we set the base of the first
digit to k · S, for all other digits it suffices to use base n + 1, in order
to ensure that no carry-digits can occur in any addition in the following
proof. The set A that contains all u′

i’s, v′i’s, bi’s, and dij ’s, together with
chosen cardinality c = n, is our instance of k Equal Sum Subsets of
Specified Cardinality.

Assume first that we are given a solution for the Alternating Parti-
tion instance, i.e., two indices sets I and J . We create k equal sum subsets
S1, . . . , Sk as follows: for i = 1, . . . , k−2, we have Si = {bi, di,1, . . . , di,n−1};
for the remaining two subsets, we let u′

i ∈ Sk−1, if i ∈ I, and v′j ∈ Sk−1,
if j ∈ J , and we let u′

j ∈ Sk, if j ∈ J , and v′i ∈ Sk, if i ∈ I. Clearly, all

these sets have n elements, and their sum is 〈 S
2
〉 ‖ 1n.

Now assume we are given a solution for the k Equal Sum Subsets
of Specified Cardinality instance, i.e., k equal sum subsets S1, . . . , Sk

of cardinality n; in this case, all numbers participate in the sets Si, and
the elements in each Si sum up to 〈S

2
〉 ‖ 1n. Since the first digit of each

bi equals S
2
, we may assume w.l.o.g. that for each 1 ≤ i ≤ k − 2, set

Si contains bi and does not contain any number with non-zero first digit
(i.e., it does not contain any u′

j or any v′j). Therefore, all u′
i’s and v′i’s

(and only these numbers) are in the remaining two subsets; this yields an
alternating partition for the original instance, as u′

i and v′i can never be
in the same subset since both have the (i + 1)-th digit non-zero. ut

Since the problem k Equal Sum Subsets of Specified Cardi-
nality is obviously in NP, we get the following

Theorem 8. For any k ≥ 2, k Equal Sum Subsets of Specified
Cardinality is NP-complete.

Composing Equipotent Teams 9

Remark: Note that the above reduction, hence also the theorem, holds
also for the variation k Equal Sum Subsets of Equal Cardinality.
This requires to employ a method where additional extra digits are used
in order to force the equal sum subsets to include all augmented numbers
that correspond to numbers in the Alternating Partition instance; a
similar method has been used in [8] to establish the NP-completeness of
Two Equal Sum Subsets (called Equal-Subset-Sum there).

However, these problems are not strongly NP-complete for fixed con-
stant k. We will now describe how to convert the dynamic programming
algorithm of Section 2 to a dynamic programming algorithm for k Equal
Sum Subsets of Specified Cardinality and for k Equal Sum Sub-
sets of Equal Cardinality.

It suffices to add to our variables k more dimensions corresponding to
cardinalities of the subsets. We define boolean variables F (i, s1, . . . , sk, c1, . . . , ck),
where i ∈ {1, . . . , n}, sj ∈ {0, . . . , bS

k
c} for 1 ≤ j ≤ k, and cj ∈ {0, . . . , bn

k
c}

for 1 ≤ j ≤ k. Variable F (i, s1, . . . , sk, c1, . . . , ck) will be TRUE if there
are k disjoint subsets X1, . . . , Xk ⊆ {a1, . . . , ai} with sum(Xj) = sj and
the cardinality of Xj is cj , for 1 ≤ j ≤ k. There are k subsets of equal sum
and equal cardinality c if and only if there exists a value s ∈ {1, . . . , b S

k
c}

such that F (n, s, . . . , s, c, . . . , c) = TRUE. Also, there are k subsets of
equal sum and equal (non-specified) cardinality if and only if there ex-
ists a value s ∈ {1, . . . , bS

k
c} and a value d ∈ {1, . . . , bn

k
c} such that

F (n, s, . . . , s, d, . . . , d) = TRUE.
Clearly, F (1, s1, . . . , sk, c1, . . . , ck) = TRUE if and only if either si =

0, ci = 0 for 1 ≤ i ≤ k, or there exists index j such that sj = a1, cj = 1,
and si = 0 and ci = 0 for all 1 ≤ i ≤ k, i 6= j.

For i ∈ {2, . . . , n}, sj ∈ {0, . . . , bS
k
c}, and cj ∈ {0, . . . , bn

k
c}, variable

F (i, s1, . . . , sk, c1, . . . , ck) can be expressed recursively as follows:

F (i, s1, . . . , sk, c1, . . . , ck) = F (i − 1, s1, . . . , sk, c1, . . . , ck) ∨
∨

1≤j≤k
sj−ai≥0

cj>0

F (i − 1, s1, . . . , sj − ai, . . . , sk, c1, . . . , cj − 1, . . . , ck).

The boolean value of all variables can be determined in time O(Sk·nk+1

k2k−1),

since there are nbS
k
ckbn

k
ck variables, and computing each variable takes

at most time O(k). This yields the following

Theorem 9. There is a dynamic programming algorithm that solves k

Equal Sum Subsets of Specified Cardinality and k Equal Sum

10 Mark Cieliebak, Stephan Eidenbenz, and Aris Pagourtzis

Subsets of Equal Cardinality for input A = {a1, . . . , an} in running

time O(Sk·nk+1

k2k−1), where S = sum(A). For k = O(1) this algorithm runs

in pseudo-polynomial time.

5 Adding Exclusion Constraints

In this section we study the problem k Equal Sum Subsets with Ex-
clusions where we are additionally given an exclusion graph (or its com-
plement: a preference graph) and ask for teams that take this graph into
account.

Obviously, k Equal Sum Subsets with Exclusions is NP-complete,
since k Equal Sum Subsets (shown NP-complete in [3]) is the special
case where the exclusion graph is empty (Eex = ∅). Here, we present a
pseudo-polynomial algorithm for the case k = 2, using a dynamic pro-
gramming approach similar-in-spirit to the one used for finding two equal
sum subsets (without exclusions) [1].

Let A = {a1, . . . , an} and Gex = (A,Eex) be an instance of k Equal
Sum Subsets with Exclusions. We assume w.l.o.g. that the input
values are ordered, i.e., a1 ≤ . . . ≤ an. Let S =

∑n
i=1 ai.

We define boolean variables F (k, t) for k ∈ {1, . . . , n} and t ∈ {1, . . . , S}.
Variable F (k, t) will be TRUE if there exists a set X ⊆ A such that
X ⊆ {a1, . . . , ak}, ak ∈ X, sum(X) = t, and X is independent in Gex.
For a TRUE entry F (k, t) we store the corresponding set in a second
variable X(k, t).

We compute the value of all variables F (k, t) by iterating over t and
k. The algorithm runs until it finds the smallest t ∈ {1, . . . , S} for which
there are indices k, ` ∈ {1, . . . , n} such that F (k, t) = F (`, t) = TRUE; in
this case, sets X(k, t) and X(`, t) constitute a solution: sum(X(k, t)) =
sum(X(`, t)) = t, both sets are disjoint due to minimality of t, and both
sets are independent in Gex.

We initialize the variables as follows. For all 1 ≤ k ≤ n, we set
F (k, t) = FALSE for 1 ≤ t < ak and for

∑k
i=1 ai < t ≤ S; moreover,

we set F (k, ak) = TRUE and X(k, ak) = {ak}. Observe that these equa-
tions already define F (1, t) for 1 ≤ t ≤ S, and F (k, 1) for 1 ≤ k ≤ n.

After initialization, the table entries for k > 1 and ak ≤ t ≤
∑k

i=1 ai

can be computed recursively: F (k, t) is TRUE if there exists an index
` ∈ {1, . . . , k−1} such that F (`, t−ak) is TRUE and the subset X(`, t−ak)
remains independent in Gex when adding ak. The recursive computation

Composing Equipotent Teams 11

is as follows.

F (k, t) =

k−1
∨

`=1

[F (`, t − ak) ∧ ∀a ∈ X(`, t − ak), (a, ak) 6∈ Eex].

If F (k, t) is set to TRUE due to F (`, t − ak), then we set X(k, t) =
X(`, t−ak)∪{ak}. The key observation for showing correctness is that for
each F (k, t) considered by the algorithm there is at most one F (`, t− ak)
that is TRUE, for 1 ≤ ` ≤ k − 1; if there were two, say `1, `2, then
X(`1, t − ak) and X(`2, t − ak) would be a solution to the problem and
the algorithm would have stopped earlier – a contradiction. This means
that all subsets considered are constructed in a unique way, and therefore
no information can be lost.

In order to determine the value F (k, t), the algorithm considers k − 1
table entries. As shown above, only one of them may be TRUE; for such
an entry, say F (`, t − ak), the (at most `) elements of X(`, t − ak) are
checked to see if they exclude ak. Hence, computation of F (k, t) takes
time O(n) and the total time complexity of the algorithm is O(n2 · S).
Therefore, we have the following

Theorem 10. Two Equal Sum Subsets with Exclusions can be

solved for input A = {a1, . . . , an} and Gex = (A,Eex) in pseudo-polynomial

time O(n2 · S), where S = sum(A).

Remarks: Observe that the problem k Equal Sum Subsets of
Cardinality c with Exclusions, where cardinality c is constant, and
an exclusion graph is given, can be solved by exhaustive search in time
O(nkc) in the same way as the problem k Equal Sum Subsets of
Cardinality c is solved (see Section 4).

Moreover, we can have a pseudo-polynomial time algorithm for k

Equal Sum Subsets of Equal Cardinality with Exclusions,
where the cardinality is part of the input, if k = 2, by modifying the
dynamic programming algorithm for Two Equal Sum Subsets with
Exclusions as follows. We introduce a further dimension in our table
F , the cardinality, and set F (k, t, c) to TRUE if there is a set X with
sum(X) = t (and all other conditions as before), and such that the cardi-
nality of X equals c. Again, we can fill the table recursively, and we stop as
soon as we find values k, ` ∈ {1, . . . , n}, t ∈ {1, . . . , S} and c ∈ {1, . . . , n}
such that F (k, t, c) = F (`, t, c) = TRUE, which yields a solution. Notice
that the corresponding two sets must be disjoint, since otherwise remov-
ing their intersection would yield two subsets of smaller equal cardinality

12 Mark Cieliebak, Stephan Eidenbenz, and Aris Pagourtzis

that are independent in Gex; thus, the algorithm - which constructs two
sets of minimal cardinality - would have stopped earlier. Table F now
has n2 · S entries, thus we can solve Two Equal Sum Subsets with
Exclusions in time O(n3 · S).

Note that the above sketched algorithm does not work for specified
cardinalities, because there may be exponentially many ways to construct
a subset of the correct cardinality.

6 Conclusion – Open Problems

In this work we studied the problem k Equal Sum Subsets and some of
its variations. We presented a pseudo-polynomial time algorithm for con-
stant k, and proved strong NP-completeness for non-constant k, namely
for the case in which we want to find n

q
subsets of equal sum, where n is

the cardinality of the input set and q a constant. We also gave pseudo-
polynomial time algorithms for the k Equal Sum Subsets of Spec-
ified Cardinality problem and for the Two Equal Sum Subsets
with Exclusions problem, as well as for variations of them.

Several questions remain open. Some of them are: determine the exact
borderline between pseudo-polynomial time solvability and strong NP-
completeness for k Equal Sum Subsets, for k being a function different
than n

q
, for example k = log n

q
; find faster dynamic programming algo-

rithms for k Equal Sum Subsets of Specified Cardinality; and,
finally, determine the complexity of k Equal Sum Subsets with Ex-
clusions, i.e. is it solvable in pseudo-polynomial time or strongly NP-
complete?

Another promising direction is to investigate approximation versions
related to the above problems, for example “given a set of numbers A,
find k subsets of A with sums that are as similar as possible”. For k = 2,
the problem has been studied by Bazgan et al. [1] and Woeginger [8]; an
FPTAS was presented in [1]. We would like to find out whether there is
an FPTAS for any constant k. Finally, it would be interesting to study
phase transitions of these problems with respect to their parameters, in
a spirit similar to the work of Borgs, Chayes and Pittel [2], where they
analyzed the phase transition of Two Equal Sum Subsets.

Acknowledgments

We would like to thank Peter Widmayer for several fruitful discussions
and ideas in the context of this work.

Composing Equipotent Teams 13

References

1. C. Bazgan, M. Santha, and Zs. Tuza; Efficient approximation algorithms for the

Subset-Sum Equality problem; Proc. ICALP’98, pp. 387–396.
2. C. Borgs, J.T. Chayes, and B. Pittel; Sharp Threshold and Scaling Window for

the Integer Partitioning Problem; Proc. STOC’01, pp. 330–336.
3. M. Cieliebak, S. Eidenbenz, A. Pagourtzis, and K. Schlude; Equal Sum Subsets:

Complexity of Variations; Technical Report 370, ETH Zurich, Department of Com-
puter Science, 2003.

4. M. Cieliebak, S. Eidenbenz, and P. Penna; Noisy Data Make the Partial Digest

Problem NP -hard; Technical Report 381, ETH Zurich, Department of Computer
Science, 2002.

5. M.R. Garey and D.S. Johnson; Computers and Intractability: A Guide to the

Theory of NP-completeness; Freeman, San Fransisco, 1979.
6. R.M. Karp; Reducibility among combinatorial problems; in R.E. Miller and J.W.

Thatcher (eds.), Complexity of Computer Computations, Plenum Press, New York,
pp. 85 – 103, 1972.

7. S. Martello and P. Toth; Knapsack Problems; John Wiley & Sons, Chichester,
1990.

8. G.J. Woeginger and Z.L. Yu; On the equal-subset-sum problem; Information Pro-
cessing Letters, 42(6), pp. 299–302, 1992.

